1,996 research outputs found

    Analysis of the Movement of Chlamydomonas Flagella: The Function of the Radial-spoke System Is Revealed by Comparison of Wild-type and Mutant Flagella

    Get PDF
    The mutation uni-1 gives rise to uniflagellate Chlamydomonas cells which rotate around a fixed point in the microscope field, so that the flagellar bending pattern can be photographed easily . This has allowed us to make a detailed analysis of the wild-type flagellar bending pattern and the bending patterns of flagella on several mutant strains. Cells containing uni-1, and recombinants of uni-1 with the suppressor mutations, sup(_pf)-1 and sup(_pf)-3, show the typical asymmetric bending pattern associated with forward swimming in Chlamydomonas, although sup(_pf)-1 flagella have about one-half the normal beat frequency, apparently as the result of defective function of the outer dynein arms. The pf-17 mutation has been shown to produce nonmotile flagella in which radial spoke heads and five characteristic axonemal polypeptides are missing. Recombinants containing pf-17 and either sup(_pf)-1 or sup(_pf)-3 have motile flagella, but still lack radial-spoke heads and the associated polypeptides . The flagellar bending pattern of these recombinants lacking radial-spoke heads is a nearly symmetric, large amplitude pattern which is quite unlike the wild-type pattern . However, the presence of an intact radial-spoke system is not required to convert active sliding into bending and is not required for bend initiation and bend propagation, since all of these processes are active in the sup(_pf) pf-17 recombinants. The function of the radial-spoke system appears to be to convert the symmetric bending pattern displayed by these recombinants into the asymmetric bending pattern required for efficient swimming, by inhibiting the development of reverse bends during the recovery phase of the bending cycle

    Statistics of quantum transmission in one dimension with broad disorder

    Full text link
    We study the statistics of quantum transmission through a one-dimensional disordered system modelled by a sequence of independent scattering units. Each unit is characterized by its length and by its action, which is proportional to the logarithm of the transmission probability through this unit. Unit actions and lengths are independent random variables, with a common distribution that is either narrow or broad. This investigation is motivated by results on disordered systems with non-stationary random potentials whose fluctuations grow with distance. In the statistical ensemble at fixed total sample length four phases can be distinguished, according to the values of the indices characterizing the distribution of the unit actions and lengths. The sample action, which is proportional to the logarithm of the conductance across the sample, is found to obey a fluctuating scaling law, and therefore to be non-self-averaging, in three of the four phases. According to the values of the two above mentioned indices, the sample action may typically grow less rapidly than linearly with the sample length (underlocalization), more rapidly than linearly (superlocalization), or linearly but with non-trivial sample-to-sample fluctuations (fluctuating localization).Comment: 26 pages, 4 figures, 1 tabl

    Recalibration Methodology to Compensate for Changing Fluid Properties in an Individual Nozzle Direct Injection Systems

    Get PDF
    Limited advancement of direct injection pesticide application systems has been made in recent years, which has hindered further commercialization of this technology. One approach to solving the lag and mixing issues typically associated with injection-based systems is high-pressure individual nozzle injection. However, accurate monitoring of the chemical concentrate flow rate can pose a challenge due to the high pressure, low flow, and changing viscosities of the fluid. A methodology was developed for recalibrating high-pressure chemical concentrate injectors to compensate for fluid property variations and evaluate the performance of this technique for operating injectors in an open-loop configuration. Specific objectives were to (1) develop a method for continuous recalibration of the chemical concentrate injectors to ensure accurate metering of chemicals of varying viscosities and (2) evaluate the recalibration method for estimating individual injector flow rates from a system of multiple injectors to assess potential errors. Test results indicated that the recalibration method was able to compensate for changes in fluid kinematic viscosity (e.g., from temperature changes and/or product variation). Errors were less than 3.4% for the minimum injector duty cycle (DCi) (at 10%) and dropped 0.2% for the maximum DCi (at 90%) for temperature changes of up to 20°C. While larger temperature changes may be expected, these test results showed that the proposed method could be successfully implemented to meet desired injection rates. Because multiple injectors would be used in commercial deployment of this technology, a method was developed to calculate the desired injector flow rate using initial injector calibration factors. Using this multi-injector recalibration method, errors ranged from 0.23% to 0.66% between predicted and actual flow rates for all three injectors

    Recalibration Methodology to Compensate for Changing Fluid Properties in an Individual Nozzle Direct Injection Systems

    Get PDF
    Limited advancement of direct injection pesticide application systems has been made in recent years, which has hindered further commercialization of this technology. One approach to solving the lag and mixing issues typically associated with injection-based systems is high-pressure individual nozzle injection. However, accurate monitoring of the chemical concentrate flow rate can pose a challenge due to the high pressure, low flow, and changing viscosities of the fluid. A methodology was developed for recalibrating high-pressure chemical concentrate injectors to compensate for fluid property variations and evaluate the performance of this technique for operating injectors in an open-loop configuration. Specific objectives were to (1) develop a method for continuous recalibration of the chemical concentrate injectors to ensure accurate metering of chemicals of varying viscosities and (2) evaluate the recalibration method for estimating individual injector flow rates from a system of multiple injectors to assess potential errors. Test results indicated that the recalibration method was able to compensate for changes in fluid kinematic viscosity (e.g., from temperature changes and/or product variation). Errors were less than 3.4% for the minimum injector duty cycle (DCi) (at 10%) and dropped 0.2% for the maximum DCi (at 90%) for temperature changes of up to 20°C. While larger temperature changes may be expected, these test results showed that the proposed method could be successfully implemented to meet desired injection rates. Because multiple injectors would be used in commercial deployment of this technology, a method was developed to calculate the desired injector flow rate using initial injector calibration factors. Using this multi-injector recalibration method, errors ranged from 0.23% to 0.66% between predicted and actual flow rates for all three injectors

    Spectral properties of zero temperature dynamics in a model of a compacting granular column

    Full text link
    The compacting of a column of grains has been studied using a one-dimensional Ising model with long range directed interactions in which down and up spins represent orientations of the grain having or not having an associated void. When the column is not shaken (zero 'temperature') the motion becomes highly constrained and under most circumstances we find that the generator of the stochastic dynamics assumes an unusual form: many eigenvalues become degenerate, but the associated multi-dimensional invariant spaces have but a single eigenvector. There is no spectral expansion and a Jordan form must be used. Many properties of the dynamics are established here analytically; some are not. General issues associated with the Jordan form are also taken up.Comment: 34 pages, 4 figures, 3 table

    Absence of localization in a disordered one-dimensional ring threaded by an Aharonov-Bohm flux

    Full text link
    Absence of localization is demonstrated analytically to leading order in weak disorder in a one-dimensional Anderson model of a ring threaded by an Aharonov-Bohm (A-B) flux. The result follows from adapting an earlier perturbation treatment of disorder in a superconducting ring subjected to an imaginary vector potential proportional to a depinning field for flux lines bound to random columnar defects parallel to the axis of the ring. The absence of localization in the ring threaded by an A-B flux for sufficiently weak disorder is compatible with large free electron type persistent current obtained in recent studies of the above model

    Object Segmentation in Images using EEG Signals

    Get PDF
    This paper explores the potential of brain-computer interfaces in segmenting objects from images. Our approach is centered around designing an effective method for displaying the image parts to the users such that they generate measurable brain reactions. When an image region, specifically a block of pixels, is displayed we estimate the probability of the block containing the object of interest using a score based on EEG activity. After several such blocks are displayed, the resulting probability map is binarized and combined with the GrabCut algorithm to segment the image into object and background regions. This study shows that BCI and simple EEG analysis are useful in locating object boundaries in images.Comment: This is a preprint version prior to submission for peer-review of the paper accepted to the 22nd ACM International Conference on Multimedia (November 3-7, 2014, Orlando, Florida, USA) for the High Risk High Reward session. 10 page

    On the statistics of superlocalized states in self-affine disordered potentials

    Full text link
    We investigate the statistics of eigenstates in a weak self-affine disordered potential in one dimension, whose Gaussian fluctuations grow with distance with a positive Hurst exponent HH. Typical eigenstates are superlocalized on samples much larger than a well-defined crossover length, which diverges in the weak-disorder regime. We present a parallel analytical investigation of the statistics of these superlocalized states in the discrete and the continuum formalisms. For the discrete tight-binding model, the effective localization length decays logarithmically with the sample size, and the logarithm of the transmission is marginally self-averaging. For the continuum Schr\"odinger equation, the superlocalization phenomenon has more drastic effects. The effective localization length decays as a power of the sample length, and the logarithm of the transmission is fully non-self-averaging.Comment: 21 pages, 6 figure

    A record-driven growth process

    Full text link
    We introduce a novel stochastic growth process, the record-driven growth process, which originates from the analysis of a class of growing networks in a universal limiting regime. Nodes are added one by one to a network, each node possessing a quality. The new incoming node connects to the preexisting node with best quality, that is, with record value for the quality. The emergent structure is that of a growing network, where groups are formed around record nodes (nodes endowed with the best intrinsic qualities). Special emphasis is put on the statistics of leaders (nodes whose degrees are the largest). The asymptotic probability for a node to be a leader is equal to the Golomb-Dickman constant omega=0.624329... which arises in problems of combinatorical nature. This outcome solves the problem of the determination of the record breaking rate for the sequence of correlated inter-record intervals. The process exhibits temporal self-similarity in the late-time regime. Connections with the statistics of the cycles of random permutations, the statistical properties of randomly broken intervals, and the Kesten variable are given.Comment: 30 pages,5 figures. Minor update

    Universal statistics of wave functions in chaotic and disordered systems

    Full text link
    We study a new statistics of wave functions in several chaotic and disordered systems: the random matrix model, band random matrix model, the Lipkin model, chaotic quantum billiard and the 1D tight-binding model. Both numerical and analytical results show that the distribution function of a generalized Riccati variable, defined as the ratio of components of eigenfunctions on basis states coupled by perturbation, is universal, and has the form of Lorentzian distribution.Comment: 6 Europhys pages, 2 Ps figures, new version to appear in Europhys. Let
    corecore